Sains Malaysiana 54(11)(2025): 165-174

http://doi.org/10.17576/jsm-2025-5401-13

 

A Review on Fish Oil Extraction from Fish by-Product as Sustainable Practices and Resource Utilization in the Fish Processing Industry

(Tinjauan Mengenai Pengekstrakan Minyak Ikan daripada Produk Sampingan Ikan sebagai Amalan Mampan dan Penggunaan Sumber dalam Industri Pemprosesan Ikan)

 

Muhamad Nor Iqmal Bin Mamat1, Hafeedza Abdul Rahman1,2, Noorul Syuhada Mohd Razali1,2, Sharifah Salmah Syed Hussain3, Khairul Farihan Kasim4 & Noor-Soffalina Sofian-Seng1,2,*

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Malaysia
3Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia

 

Received: 12 August 2024/Accepted: 2 September 2024

 

Abstract

The fish processing industry generates significant by-products, such as viscera, skin, bones, and heads, which are valuable for producing food, medicinal products, energy, and industrial feedstock. Fish oil, rich in omega-3 polyunsaturated fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is widely used in nutritional supplements and other applications. Among these by-products, fish viscera contain the highest concentration of oil, making them an ideal target for extraction due to their cost-effectiveness and environmental benefits. Extracting oil from fish by-product helps reduce environmental pollution and promotes sustainable practices by fully utilizing fish resources. This holistic approach contributes to waste reduction and resource efficiency in the fish processing industry. By incorporating sustainable principles into extraction processes - such as using environmentally friendly solvents, implementing efficient solvent recovery systems, and ensuring compliance with environmental regulations - companies can enhance the sustainability of their operations while extracting valuable components. As demand for fish-based food products rises, effective extraction of fish oil and fishmeal from by-products becomes increasingly important. Various extraction methods, including physical, chemical, and biological approaches, are essential for separating solids, oil, and water to recover valuable components like EPA and DHA. Optimizing these processes and combining different methods can achieve high concentrations of polyunsaturated fatty acids (PUFAs) in fish oil, ranging from 65% to 80%. Emphasizing maximum PUFA content highlights the potential to enhance the quality and nutritional value of fish oil extracted from by-products while advancing sustainability in the fish processing industry.

 

Keywords: Circular economy; extraction; fish by-products; fish oil; viscera

 

Abstrak

Industri pemprosesan ikan menghasilkan banyak hasil sampingan seperti visera, kulit, tulang dan kepala yang bernilai untuk pengeluaran makanan, produk perubatan, tenaga dan bahan mentah industri. Minyak ikan, kaya dengan asid lemak tak tepu omega-3 seperti asid eicosapentaenoic (EPA) dan asid dokosaheksaenoik (DHA) banyak digunakan dalam makanan tambahan nutrisi dan aplikasi lain. Antara hasil sampingan ini, visera ikan mengandungi kepekatan minyak tertinggi, menjadikannya sasaran utama untuk pengekstrakan kerana kos yang berkesan dan manfaat persekitarannya. Pengekstrakan minyak daripada hasil sampingan ikan membantu mengurangkan pencemaran alam sekitar dan mempromosikan amalan mampan dengan memanfaatkan sepenuhnya sumber ikan. Pendekatan holistik ini menyumbang kepada pengurangan sisa dan kecekapan sumber dalam industri pemprosesan ikan. Dengan menggabungkan prinsip mampan dalam proses pengekstrakan seperti menggunakan pelarut mesra alam, melaksanakan sistem pemulihan pelarut yang cekap dan memastikan pematuhan terhadap peraturan alam sekitar, syarikat boleh meningkatkan kemampanan operasi mereka sambil mengekstrak komponen yang bernilai. Apabila permintaan terhadap produk makanan berasaskan ikan meningkat, pengekstrakan minyak ikan dan tepung ikan yang berkesan daripada hasil sampingan menjadi semakin penting. Pelbagai kaedah pengekstrakan, termasuk pendekatan fizikal, kimia dan biologi, adalah penting untuk memisahkan pepejal, minyak dan air bagi memulihkan komponen berharga seperti EPA dan DHA. Mengoptimumkan proses ini dan menggabungkan kaedah yang berbeza boleh mencapai kepekatan tinggi asid lemak tak tepu (PUFA) dalam minyak ikan, antara 65% hingga 80%. Menekankan kandungan PUFA maksimum menunjukkan potensi untuk meningkatkan kualiti dan nilai pemakanan minyak ikan yang diekstrak daripada hasil sampingan sambil memajukan kemampanan dalam industri pemprosesan ikan.

 

Kata kunci: Ekonomi membulat; minyak ikan; pengekstrakan; produk sampingan ikan; visera

 

REFERENCES

Afreen, M. & Ucak, I. 2020. Fish processing wastes used as feed ingredient for animal feed and aquaculture feed. Journal of Survey in Fisheries Sciences 6(2): 55-64.

Aitta, E., Marsol-Vall, A., Damerau, A. & Yang, B. 2021. Enzyme-assisted extraction of fish oil from whole fish and by-products of Baltic herring (Clupea harengus membras). Foods 10(8): 1811.

Arab-Tehrany, E., Jacquot, M., Gaiani, C., Imran, M., Desobry, S. & Linder, M. 2012. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends in Food Science & Technology 25(1): 24-33.

Alfio, V.G., Manzo, C. & Micillo, R. 2021. From fish waste to value: An overview of the sustainable recovery of omega-3 for food supplements. Molecules 26(4): 1002.

Al-Hilphy, A. R., Al-Mtury, A. A. A., Al-Shatty, S. M., Hussain, Q. N. & Gavahian, M. 2022. Ohmic heating as a by-product valorization platform to extract oil from Carp (Cyprinus carpio) viscera. Food and Bioprocess Technology 15(11): 2515-2530.

Arias, L., Marquez, D. M. & Zapata, J. E. 2022. Quality of red tilapia viscera oil (Oreochromis sp.) as a function of extraction methods. Heliyon 8(5).

Araujo, J., Sica, P., Costa, C. & Márquez, M.C. 2021. Enzymatic hydrolysis of fish waste as an alternative to produce high value-added products. Waste and Biomass Valorization 12: 847-855.

Bashiri, B., Cropotova, J., Kvangarsnes, K., Gavrilova, O. & Vilu, R. 2024. Environmental and economic life cycle assessment of enzymatic hydrolysis-based fish protein and oil extraction. Resources 13(5): 61.

Bezerra, R.A. & Fonseca, G.G. 2023. Microbial count, chemical composition and fatty acid profile of biological silage obtained from pacu and spotted sorubim fish waste using lactic acid bacteria fermentation. Biocatalysis and Agricultural Biotechnology 54: 102929.

Borges, S., Odila, J., Voss, G., Martins, R., Rosa, A., Couto, J.A., Almeida, A. & Pintado, M. 2023. Fish by-products: A source of enzymes to generate circular bioactive hydrolysates. Molecules 28(3): 1155.

Caruso, G., Floris, R., Serangeli, C. & Di Paola, L. 2020. Fishery wastes as a yet undiscovered treasure from the sea: Biomolecules sources, extraction methods and valorization. Marine Drugs 18(12): 622.

Carvalho, A.P., Moreira, M.M., Delerue-Matos, C., Gomes, A.M., Freitas, A.C. & Grosso C. 2019. Valorization of lipid by-products. In Lipids and Edible Oils, Ed by Galanakis C.M. Elsevier Academic Press (London), pp. 133-174.

Chemat, F., Abert Vian, M., Ravi, H. K., Khadhraoui, B., Hilali, S., Perino, S., & Fabiano Tixier, A. S. 2019. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 24(16): 3007.

Chen, W., Liu, Y., Song, L., Sommerfeld, M. & Hu, Q. 2020. Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Research51: 102080.

Chozhavendhan, S., Vijay Pradhap Singh, M., Fransila, B., Praven Kumar, R. & Karthiga Devi, G. 2020. A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry 1(2): 1-6.

Dave, J., Ali, A.M.M., Kumar, N., Nagarajan, M., Kieliszek, M. & Bavisetty, S.C.B. 2024. Investigating the impact of wet rendering (solventless method) on PUFA-rich oil from catfish (Clarias magur) viscera. Open Life Sciences 19(1): 20220903.

Djamaludin, H., Sulistiyati, T.D., Chamidah, A., Nurashikin, P., Roifah, M., Notonegoro, H. & Ferdian, P.R. 2023. Quality and fatty acid profiles of fish oil from tuna by-products extracted using a dry-rendering method. Biodiversitas Journal of Biological Diversity 24(11): 6100-6106.

Franklin, E.C., Haq, M., Roy, V.C., Park, J.S. & Chun, B.S. 2020. Supercritical CO2 extraction and quality comparison of lipids from Yellowtail fish (Seriola quinqueradiata) waste in different conditions. Journal of Food Processing and Preservation44(11): e14892.

Garofalo, S.F., Cavallini, N., Demichelis, F., Mancini, S.G., Fino, D. & Tommasi, T. 2023. From tuna viscera to added-value products: A circular approach for fish-waste recovery by green enzymatic hydrolysis. Food and Bioproducts Processing 137: 155-167.

Hashim, N.A., Mazilan, M.S.R., Man, R.C., Arshad, Z.M. & Mudalip, S.K. 2022. Recovery of omega-3 fish oil from Monopterus albus using microwave assisted extraction process. In AIP Conference Proceedings 2610: 060015.

Hossain, K.Z. 2022. Oil quality of by-products of marine fish during processing methods. Journal of Aquaculture & Marine Biology 11(3): 135-137.

Hrebień‐Filisińska, A. 2021. Application of natural antioxidants in the oxidative stabilization of fish oils: A mini‐review. Journal of Food Processing and Preservation 45(4): e15342.

Jamalluddin, N.A., Ismail, N., Mutalib, S.R.A. & Sikin, A.M. 2022. SC-CO2 extraction of fish and fish by-products in the production of fish oil and enzyme. Bioresources and Bioprocessing9: 21.

Jamshidi, A., Cao, H., Xiao, J. & Simal-Gandara, J. 2020. Advantages of techniques to fortify food products with the benefits of fish oil. Food Research International 137: 109353.

Iberahim, N. I., & Tan, B. C. 2020. Hexane-isopropanol extraction and quality assessment of omega-3 fish oil from Atlantic salmon (Salmo salar). In IOP Conference Series: Materials Science and Engineering (Vol. 932, No. 1, p. 012038). IOP Publishing.

Isa, N., Sofian-Seng, N.S. & Wan Mustapha, W.A. 2021. Supercritical fluid extraction of lipid from mango (Mangifera indica L.) seed waste and comparison of its physicochemical characteristics with cocoa butter (Theobroma cacao L.). Sains Malaysiana 50(7): 1901-1911.

Keskin Çavdar, H., Bilgin, H., Fadıloğlu, S. & Yılmaz, F.M. 2023. Ultrasound‐and microwave‐assisted extractions facilitate oil recovery from Gilthead Seabream (Sparus aurata) by‐products and enhance fish oil quality parameters. European Journal of Lipid Science and Technology125(3): 2200089.

Kratky, L. & Zamazal, P. 2020. Economic feasibility and sensitivity analysis of fish waste processing biorefinery. Journal of Cleaner Production 243: 118677.

Liu, Y., & Dave, D. 2022. Beyond processing waste: Extraction of oil from Atlantic salmon (Salmo salar) by-products using immobilized Alcalase on chitosan-coated magnetic nanoparticles. Aquaculture 548: 737546.

Liu, Y., Ramakrishnan, V. V., & Dave, D. 2021. Enzymatic hydrolysis of farmed Atlantic salmon by-products: Investigation of operational parameters on extracted oil yield and quality. Process Biochemistry 100: 10-19.

Marsol-Vall, A., Aitta, E., Guo, Z. & Yang, B. 2022. Green technologies for production of oils rich in n-3 polyunsaturated fatty acids from aquatic sources. Critical Reviews in Food Science and Nutrition 62(11): 2942-2962.

Mgbechidinma, C.L., Zheng, G., Baguya, E.B., Zhou, H., Okon, S.U. & Zhang, C. 2023. Fatty acid composition and nutritional analysis of waste crude fish oil obtained by optimized milder extraction methods. Environmental Engineering Research 28(2). https://doi.org/10.4491/eer.2022.034

Meidell, L.S., Slizyte, R., Mozuraityte, R., Carvajal, A.K., Rustad, T., Standal, I.B., Kopczyk, M. & Falch, E. 2023. Silage for upcycling oil from saithe (Pollachius virens) viscera - Effect of raw material freshness on the oil quality. Heliyon 9(6): e16972.

Melgosa, R., Sanz, M.T. & Beltrán, S. 2021. Supercritical CO2 processing of omega-3 polyunsaturated fatty acids - Towards a biorefinery for fish waste valorization. The Journal of Supercritical Fluids 169: 105121.

Mokhtar, N., Abdul Rahman, H., Sofian‐Seng, N.S., Lim, S.J., Wan Mustapha, W.A., Abdul Hamid, A., Mohd Razali, N.S. & Mohamed Nazir, M.Y. 2024. Comparative analysis of process intensification technologies (PIT) for improved cell disruption and lipid recovery in Aurantiochytrium sp. SW1 microalgae. International Journal of Food Science & Technology 59(10): 7827-7836.

Mota, F. A., Costa Filho, J. T., & Barreto, G. A. 2019. The Nile tilapia viscera oil extraction for biodiesel production in Brazil: An economic analysis. Renewable and Sustainable Energy Reviews 108: 1-10.

Mokhtar, N., Chang, L.S., Soon, Y., Mustapha, W.A.W., Sofian-Seng, N.S., Rahman, H.A., Mohd Razali, N.S., Shuib, S., Hamid, A.A. & Lim, S.J. 2021. Harvesting Aurantiochytrium sp. SW1 using organic flocculants and characteristics of the extracted oil. Algal Research 54: 102211.

Morales, A.H., Pisa, J.H., Gómez, M.I., Romero, C.M., Vittone, M., Massa, A.E. & Lamas, D.L. 2024. Comparative oil extraction from mutt (Myliobatis goodei) liver by enzymatic hydrolysis: free versus immobilized biocatalyst. Journal of the Science of Food and Agriculture 104(4): 2493-2501.

Mutalipassi, M., Esposito, R., Ruocco, N., Viel, T., Costantini, M., & Zupo, V. 2021. Bioactive compounds of nutraceutical value from fishery and aquaculture discards. Foods 10(7): 1495.

Nazir, N., Diana, A. & Sayuti, K. 2017. Physicochemical and fatty acid profile of fish oil from head of tuna (Thunnus albacares) extracted from various extraction method. International Journal on Advanced Science, Engineering and Information Technology 7(2): 709-715.

Ozogul, F., Cagalj, M., Šimat, V., Ozogul, Y., Tkaczewska, J., Hassoun, A., Kadour, A.A., Kuley, E., Rathod, N.B. & Phadke, G.G. 2021. Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends in Food Science & Technology 116: 559-582.

Özyurt, G., Özkütük, A.S., Uçar, Y., Durmuş, M. & Ozogul, Y. 2019. Evaluation of the potential use of discard species for fish silage and assessment of its oils for human consumption. International Journal of Food Science & Technology 54(4): 1081-1088.

Pinela, J., Fuente, B.D.L., Rodrigues, M., Pires, T.C., Mandim, F., Almeida, A., Dias, M.N., Calejam, C. & Barros, L. 2022. Upcycling fish by-products into bioactive fish oil: The suitability of microwave-assisted extraction. Biomolecules 13(1): 1.

Pudtikajorn, K. & Benjakul, S. 2020. Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. European Journal of Lipid Science and Technology 122(8): 2000077.

Purnamayati, L., Dito, B.S., Dewi, E.N. & Suharto, S. 2023. Optimization of tilapia (Oreochromis niloticus) viscera oil extraction using response surface methodology. Food Research 7(3): 12-20.

Putri, A.R., Setyaningsih, W., Carrera Fernández, C.A., Palma Lovillo, M., Rohman, A. & Riyanto, S. 2023. Optimization of microwave-assisted fish oil extraction from Patin (Pangasius micronemus) using Response Surface Methodology-Box Behnken Design (RSM-BBD). Pharmaceutical Sciences Asia 50(3): 229-237.

Raeesi, R., Shabanpour, B. & Pourashouri, P. 2021. Quality evaluation of produced silage and extracted oil from rainbow trout (Oncorhynchus mykiss) wastes using acidic and fermentation methods. Waste and Biomass Valorization 12: 4931-4942.

Rishitha, M., Gude, J. & Rao DM. Extraction and characterization of fish oil from Channa straita waste collected from Anantapuram fish market. Journal of Natural Remedies. 21(8):228-40

Sahena, F., Zaidul, I. S. M., Jinap, S., Yazid, A. M., Khatib, A., & Norulaini, N. A. N. 2010. Fatty acid compositions of fish oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of supercritical CO2 extraction. Food Chemistry 120(3): 879-885.

Sajib, M., Trigo, J.P., Abdollahi, M. & Undeland, I. 2022. Pilot-scale ensilaging of herring filleting co-products and subsequent separation of fish oil and protein hydrolysates. Food and Bioprocess Technology 15(10): 2267-2281.

Saleh, N.E., Wassef, E.A. & Abdel-Mohsen, H.H. 2022. Sustainable fish and seafood production and processing. In Sustainable Fish Production and Processing, edited by Galanakis, C.M. Massachusetts: Academic Press. pp. 259-291.

Salih, A.W., Najim, S.M. & Al-Noor, J.M. 2021. Some physical, chemical and sensory properties of fish oil extracted from fish wastes by physical and chemical methods. Biological and Applied Environmental Research 5(1): 152-162.

Sivaranjani, S., Puja, N., Rout, R.K., Joshi, T.J., Singh, S.M., Indumathi, M. & Kumar, T.D. 2024. Strategies to recover protein and lipids from fish processing by-products. In Fish Waste to Valuable Products, edited by Maqsood, S., Naseer, M.N., Benjakul, S. & Zaidi, A.A. Singapore: Springer Nature.

Suseno, S.H., Rizkon, A.K., Jacoeb, A.M. & Listiana, D. 2021. Fish oil extraction as a by-product of Tilapia (Oreochromis sp.) fish processing with dry rendering method. IOP Conference Series: Earth and Environmental Science 679: 012009.

Thirukumaran, R., Priya, V.K.A., Krishnamoorthy, S., Ramakrishnan, P., Moses, J.A. & Anandharamakrishnan, C. 2022. Resource recovery from fish waste: Prospects and the usage of intensified extraction technologies. Chemosphere 299: 134361.

Tu, Z.C., Huang, T., Wang, H., Sha, X.M., Shi, Y., Huang, X.Q., Man, Z.Z. & Li, D.J., 2015. Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of Food Science and Technology 52: 2166-2174.

van’t Land, M., Vanderperren, E. & Raes, K. 2017. The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Animal Feed Science and Technology 234: 284-294.

Vázquez, J.A., Fraguas, J., Mirón, J., Valcárcel, J., Pérez-Martín, R.I. & Antelo, L.T. 2020a. Valorisation of fish discards assisted by enzymatic hydrolysis and microbial bioconversion: Lab and pilot plant studies and preliminary sustainability evaluation. Journal of Cleaner Production 246: 119027.

Vázquez, J.A., Rodríguez-Amado, I., Sotelo, C.G., Sanz, N., Pérez-Martín, R.I. & Valcárcel, J. 2020b. Production, characterization, and bioactivity of fish protein hydrolysates from aquaculture turbot (Scophthalmus maximus) wastes. Biomolecules 10(2): 310.

Wan-Mohtar, W.A.A.Q.I., Khalid, N.I., Rahim, M.H.A., Luthfi, A.A.I., Zaini, N.S.M., Din, N.A.S. & Mohd Zaini, N.A. 2023. Underutilized Malaysian agro-industrial wastes as sustainable carbon sources for lactic acid production. Fermentation 9(10): 905.

Wang, M., Zhou, J., Collado, M.C. & Barba, F.J. 2021. Accelerated solvent extraction and pulsed electric fields for valorization of rainbow trout (Oncorhynchus mykiss) and sole (Dover sole) by-products: Protein content, molecular weight distribution and antioxidant potential of the extracts. Marine Drugs 19(4): 207.

Zhang, Y., Sun, Q., Liu, S., Wei, S., Xia, Q., Ji, H., Deng, C. & Hao, J. 2021. Extraction of fish oil from fish heads using ultra-high pressure pre-treatment prior to enzymatic hydrolysis. Innovative Food Science & Emerging Technologies 70: 102670.

Zubairi, S.I., Shy-Yi, W.N., Kasim, Z.M. & Nurzahim, Z. 2021. Physico-chemical characteristics and quality evaluation of Malaysia haruan (Channa striatus) and toman (Channa micropeltes) fish oil: Preliminary quality analysis prior to therapeutic consumption. Oriental Journal of Chemistry 37(3): 619.

 

*Corresponding author; email: soffalina@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next