Sains
Malaysiana 54(11)(2025): 165-174
http://doi.org/10.17576/jsm-2025-5401-13
A Review on Fish Oil Extraction from Fish by-Product as Sustainable Practices and Resource Utilization in the Fish Processing
Industry
(Tinjauan
Mengenai Pengekstrakan Minyak Ikan daripada Produk Sampingan Ikan sebagai
Amalan Mampan dan Penggunaan Sumber dalam Industri Pemprosesan Ikan)
Muhamad Nor Iqmal Bin Mamat1, Hafeedza Abdul Rahman1,2, Noorul Syuhada Mohd Razali1,2, Sharifah Salmah Syed Hussain3, Khairul Farihan Kasim4 & Noor-Soffalina Sofian-Seng1,2,*
1Department of Food Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Innovation Centre for Confectionery Technology (MANIS), Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Malaysia
3Department of Veterinary
Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Faculty of Chemical Engineering & Technology, Universiti
Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
Received: 12
August 2024/Accepted: 2 September 2024
Abstract
The fish
processing industry generates significant by-products, such as viscera, skin,
bones, and heads, which are valuable for producing food, medicinal products,
energy, and industrial feedstock. Fish oil, rich in omega-3 polyunsaturated
fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is
widely used in nutritional supplements and other applications. Among these
by-products, fish viscera contain the highest concentration of oil, making them
an ideal target for extraction due to their cost-effectiveness and
environmental benefits. Extracting oil from fish by-product helps reduce
environmental pollution and promotes sustainable practices by fully utilizing
fish resources. This holistic approach contributes to waste reduction and
resource efficiency in the fish processing industry. By incorporating
sustainable principles into extraction processes - such as using
environmentally friendly solvents, implementing efficient solvent recovery
systems, and ensuring compliance with environmental regulations - companies can
enhance the sustainability of their operations while extracting valuable
components. As demand for fish-based food products rises, effective extraction
of fish oil and fishmeal from by-products becomes increasingly important.
Various extraction methods, including physical, chemical, and biological
approaches, are essential for separating solids, oil, and water to recover
valuable components like EPA and DHA. Optimizing these processes and combining
different methods can achieve high concentrations of polyunsaturated fatty
acids (PUFAs) in fish oil, ranging from 65% to 80%. Emphasizing maximum PUFA
content highlights the potential to enhance the quality and nutritional value
of fish oil extracted from by-products while advancing sustainability in the fish
processing industry.
Keywords:
Circular economy; extraction; fish by-products; fish oil; viscera
Abstrak
Industri
pemprosesan ikan menghasilkan banyak hasil sampingan seperti visera, kulit,
tulang dan kepala yang bernilai untuk pengeluaran makanan, produk perubatan,
tenaga dan bahan mentah industri. Minyak ikan, kaya dengan asid lemak tak tepu
omega-3 seperti asid eicosapentaenoic (EPA) dan asid dokosaheksaenoik (DHA)
banyak digunakan dalam makanan tambahan nutrisi dan aplikasi lain. Antara hasil
sampingan ini, visera ikan mengandungi kepekatan minyak tertinggi,
menjadikannya sasaran utama untuk pengekstrakan kerana kos yang berkesan dan
manfaat persekitarannya. Pengekstrakan minyak daripada hasil sampingan ikan
membantu mengurangkan pencemaran alam sekitar dan mempromosikan amalan mampan
dengan memanfaatkan sepenuhnya sumber ikan. Pendekatan holistik ini menyumbang
kepada pengurangan sisa dan kecekapan sumber dalam industri pemprosesan ikan.
Dengan menggabungkan prinsip mampan dalam proses pengekstrakan seperti
menggunakan pelarut mesra alam, melaksanakan sistem pemulihan pelarut yang
cekap dan memastikan pematuhan terhadap peraturan alam sekitar, syarikat boleh
meningkatkan kemampanan operasi mereka sambil mengekstrak komponen yang
bernilai. Apabila permintaan terhadap produk makanan berasaskan ikan meningkat,
pengekstrakan minyak ikan dan tepung ikan yang berkesan daripada hasil
sampingan menjadi semakin penting. Pelbagai kaedah pengekstrakan, termasuk
pendekatan fizikal, kimia dan biologi, adalah penting untuk memisahkan pepejal,
minyak dan air bagi memulihkan komponen berharga seperti EPA dan DHA.
Mengoptimumkan proses ini dan menggabungkan kaedah yang berbeza boleh mencapai
kepekatan tinggi asid lemak tak tepu (PUFA) dalam minyak ikan, antara 65% hingga
80%. Menekankan kandungan PUFA maksimum menunjukkan potensi untuk meningkatkan
kualiti dan nilai pemakanan minyak ikan yang diekstrak daripada hasil sampingan
sambil memajukan kemampanan dalam industri pemprosesan ikan.
Kata kunci:
Ekonomi membulat; minyak ikan; pengekstrakan; produk sampingan ikan; visera
REFERENCES
Afreen, M. & Ucak, I. 2020. Fish
processing wastes used as feed ingredient for animal feed and aquaculture feed. Journal of Survey in Fisheries Sciences 6(2): 55-64.
Aitta, E., Marsol-Vall, A., Damerau, A.
& Yang, B. 2021. Enzyme-assisted extraction of fish oil from whole fish and
by-products of Baltic herring (Clupea harengus membras). Foods 10(8): 1811.
Arab-Tehrany, E., Jacquot, M., Gaiani, C.,
Imran, M., Desobry, S. & Linder, M. 2012. Beneficial effects and oxidative
stability of omega-3 long-chain polyunsaturated fatty acids. Trends in Food
Science & Technology 25(1): 24-33.
Alfio, V.G., Manzo, C. & Micillo, R.
2021. From fish waste to value: An overview of the sustainable recovery of
omega-3 for food supplements. Molecules 26(4): 1002.
Al-Hilphy, A. R., Al-Mtury, A. A. A.,
Al-Shatty, S. M., Hussain, Q. N. & Gavahian, M. 2022. Ohmic heating as a
by-product valorization platform to extract oil from Carp (Cyprinus carpio)
viscera. Food and Bioprocess Technology 15(11): 2515-2530.
Arias, L., Marquez, D. M. & Zapata, J.
E. 2022. Quality of red tilapia viscera oil (Oreochromis sp.) as a function of
extraction methods. Heliyon 8(5).
Araujo, J., Sica, P., Costa, C. &
Márquez, M.C. 2021. Enzymatic hydrolysis of fish waste as an alternative to
produce high value-added products. Waste and Biomass Valorization 12:
847-855.
Bashiri, B., Cropotova, J., Kvangarsnes,
K., Gavrilova, O. & Vilu, R. 2024. Environmental and economic life cycle
assessment of enzymatic hydrolysis-based fish protein and oil extraction. Resources 13(5): 61.
Bezerra, R.A. & Fonseca, G.G. 2023.
Microbial count, chemical composition and fatty acid profile of biological
silage obtained from pacu and spotted sorubim fish waste using lactic acid
bacteria fermentation. Biocatalysis and Agricultural Biotechnology 54:
102929.
Borges, S., Odila, J., Voss, G., Martins,
R., Rosa, A., Couto, J.A., Almeida, A. & Pintado, M. 2023. Fish
by-products: A source of enzymes to generate circular bioactive hydrolysates. Molecules 28(3): 1155.
Caruso, G., Floris, R., Serangeli, C. &
Di Paola, L. 2020. Fishery wastes as a yet undiscovered treasure from the sea:
Biomolecules sources, extraction methods and valorization. Marine Drugs 18(12): 622.
Carvalho, A.P., Moreira, M.M.,
Delerue-Matos, C., Gomes, A.M., Freitas, A.C. & Grosso C. 2019.
Valorization of lipid by-products. In Lipids and Edible Oils, Ed by
Galanakis C.M. Elsevier Academic Press (London), pp. 133-174.
Chemat, F., Abert Vian, M., Ravi, H. K.,
Khadhraoui, B., Hilali, S., Perino, S., & Fabiano Tixier, A. S. 2019.
Review of alternative solvents for green extraction of food and natural
products: Panorama, principles, applications and prospects. Molecules 24(16): 3007.
Chen, W., Liu, Y., Song, L., Sommerfeld, M.
& Hu, Q. 2020. Automated accelerated solvent extraction method for total
lipid analysis of microalgae. Algal Research51: 102080.
Chozhavendhan, S., Vijay Pradhap Singh, M.,
Fransila, B., Praven Kumar, R. & Karthiga Devi, G. 2020. A review on
influencing parameters of biodiesel production and purification processes. Current
Research in Green and Sustainable Chemistry 1(2): 1-6.
Dave, J., Ali, A.M.M., Kumar, N.,
Nagarajan, M., Kieliszek, M. & Bavisetty, S.C.B. 2024. Investigating the
impact of wet rendering (solventless method) on PUFA-rich oil from catfish (Clarias
magur) viscera. Open Life Sciences 19(1): 20220903.
Djamaludin, H., Sulistiyati, T.D.,
Chamidah, A., Nurashikin, P., Roifah, M., Notonegoro, H. & Ferdian, P.R.
2023. Quality and fatty acid profiles of fish oil from tuna by-products
extracted using a dry-rendering method. Biodiversitas Journal of Biological
Diversity 24(11): 6100-6106.
Franklin, E.C., Haq, M., Roy, V.C., Park,
J.S. & Chun, B.S. 2020. Supercritical CO2 extraction and quality
comparison of lipids from Yellowtail fish (Seriola quinqueradiata) waste
in different conditions. Journal of Food Processing and Preservation44(11): e14892.
Garofalo, S.F., Cavallini, N., Demichelis,
F., Mancini, S.G., Fino, D. & Tommasi, T. 2023. From tuna viscera to
added-value products: A circular approach for fish-waste recovery by green
enzymatic hydrolysis. Food and Bioproducts Processing 137: 155-167.
Hashim, N.A., Mazilan, M.S.R., Man, R.C.,
Arshad, Z.M. & Mudalip, S.K. 2022. Recovery of omega-3 fish oil from Monopterus
albus using microwave assisted extraction process. In AIP Conference
Proceedings 2610: 060015.
Hossain, K.Z. 2022. Oil quality of
by-products of marine fish during processing methods. Journal of Aquaculture
& Marine Biology 11(3): 135-137.
Hrebień‐Filisińska, A.
2021. Application of natural antioxidants in the oxidative stabilization of
fish oils: A mini‐review. Journal of Food Processing and Preservation 45(4): e15342.
Jamalluddin, N.A., Ismail, N., Mutalib, S.R.A.
& Sikin, A.M. 2022. SC-CO2 extraction of fish and fish
by-products in the production of fish oil and enzyme. Bioresources and
Bioprocessing9:
21.
Jamshidi, A., Cao, H., Xiao, J. &
Simal-Gandara, J. 2020. Advantages of techniques to fortify food products with
the benefits of fish oil. Food Research International 137: 109353.
Iberahim, N. I., & Tan, B. C. 2020.
Hexane-isopropanol extraction and quality assessment of omega-3 fish oil from
Atlantic salmon (Salmo salar). In IOP Conference Series: Materials
Science and Engineering (Vol. 932, No. 1, p. 012038). IOP Publishing.
Isa, N., Sofian-Seng, N.S. & Wan
Mustapha, W.A. 2021. Supercritical fluid extraction of lipid from mango (Mangifera
indica L.) seed waste and comparison of its physicochemical characteristics
with cocoa butter (Theobroma cacao L.). Sains Malaysiana 50(7):
1901-1911.
Keskin Çavdar, H., Bilgin, H.,
Fadıloğlu, S. & Yılmaz, F.M. 2023. Ultrasound‐and
microwave‐assisted extractions facilitate oil recovery from Gilthead
Seabream (Sparus aurata) by‐products and enhance fish oil quality
parameters. European Journal of Lipid Science and Technology125(3): 2200089.
Kratky, L. & Zamazal, P.
2020. Economic feasibility and sensitivity analysis of fish waste processing biorefinery. Journal of
Cleaner Production 243:
118677.
Liu, Y., & Dave, D. 2022. Beyond
processing waste: Extraction of oil from Atlantic salmon (Salmo salar)
by-products using immobilized Alcalase on chitosan-coated magnetic
nanoparticles. Aquaculture 548: 737546.
Liu, Y., Ramakrishnan, V. V., & Dave,
D. 2021. Enzymatic hydrolysis of farmed Atlantic salmon by-products:
Investigation of operational parameters on extracted oil yield and quality. Process
Biochemistry 100: 10-19.
Marsol-Vall, A., Aitta, E., Guo, Z. &
Yang, B. 2022. Green technologies for production of oils rich in n-3
polyunsaturated fatty acids from aquatic sources. Critical Reviews in Food
Science and Nutrition 62(11): 2942-2962.
Mgbechidinma, C.L., Zheng, G., Baguya,
E.B., Zhou, H., Okon, S.U. & Zhang, C. 2023. Fatty acid composition and
nutritional analysis of waste crude fish oil obtained by optimized milder
extraction methods. Environmental Engineering Research 28(2).
https://doi.org/10.4491/eer.2022.034
Meidell, L.S., Slizyte, R., Mozuraityte,
R., Carvajal, A.K., Rustad, T., Standal, I.B., Kopczyk, M. & Falch, E.
2023. Silage for upcycling oil from saithe (Pollachius virens) viscera -
Effect of raw material freshness on the oil quality. Heliyon 9(6):
e16972.
Melgosa, R., Sanz, M.T. & Beltrán, S.
2021. Supercritical CO2 processing of omega-3 polyunsaturated fatty
acids - Towards a biorefinery for fish waste valorization. The Journal of
Supercritical Fluids 169:
105121.
Mokhtar, N., Abdul Rahman, H.,
Sofian‐Seng, N.S., Lim, S.J., Wan Mustapha, W.A., Abdul Hamid, A., Mohd
Razali, N.S. & Mohamed Nazir, M.Y. 2024. Comparative analysis of process
intensification technologies (PIT) for improved cell disruption and lipid
recovery in Aurantiochytrium sp. SW1 microalgae. International
Journal of Food Science & Technology 59(10): 7827-7836.
Mota, F. A., Costa Filho, J. T., &
Barreto, G. A. 2019. The Nile tilapia viscera oil extraction for biodiesel
production in Brazil: An economic analysis. Renewable and Sustainable Energy
Reviews 108: 1-10.
Mokhtar, N., Chang, L.S., Soon, Y.,
Mustapha, W.A.W., Sofian-Seng, N.S., Rahman, H.A., Mohd Razali, N.S., Shuib,
S., Hamid, A.A. & Lim, S.J. 2021. Harvesting Aurantiochytrium sp.
SW1 using organic flocculants and characteristics of the extracted oil. Algal
Research 54: 102211.
Morales, A.H., Pisa, J.H., Gómez, M.I.,
Romero, C.M., Vittone, M., Massa, A.E. & Lamas, D.L. 2024. Comparative oil
extraction from mutt (Myliobatis goodei) liver by enzymatic hydrolysis:
free versus immobilized biocatalyst. Journal of the Science of Food and
Agriculture 104(4): 2493-2501.
Mutalipassi, M., Esposito, R., Ruocco, N.,
Viel, T., Costantini, M., & Zupo, V. 2021. Bioactive compounds of
nutraceutical value from fishery and aquaculture discards. Foods 10(7):
1495.
Nazir, N., Diana, A. & Sayuti, K. 2017.
Physicochemical and fatty acid profile of fish oil from head of tuna (Thunnus
albacares) extracted from various extraction method. International
Journal on Advanced Science, Engineering and Information Technology 7(2):
709-715.
Ozogul, F., Cagalj, M., Šimat, V., Ozogul, Y., Tkaczewska, J., Hassoun,
A., Kadour, A.A., Kuley, E., Rathod, N.B. & Phadke, G.G. 2021. Recent
developments in valorisation of bioactive ingredients in discard/seafood
processing by-products. Trends in Food Science & Technology 116:
559-582.
Özyurt, G., Özkütük, A.S., Uçar, Y., Durmuş, M. &
Ozogul, Y. 2019. Evaluation of the potential use of discard species for fish
silage and assessment of its oils for human consumption. International
Journal of Food Science & Technology 54(4): 1081-1088.
Pinela, J., Fuente, B.D.L., Rodrigues, M.,
Pires, T.C., Mandim, F., Almeida, A., Dias, M.N., Calejam, C. & Barros, L.
2022. Upcycling fish by-products into bioactive fish oil: The suitability of
microwave-assisted extraction. Biomolecules 13(1): 1.
Pudtikajorn, K. & Benjakul, S. 2020.
Simple wet rendering method for extraction of prime quality oil from skipjack
tuna eyeballs. European Journal of Lipid Science and Technology 122(8):
2000077.
Purnamayati, L., Dito, B.S., Dewi, E.N.
& Suharto, S. 2023. Optimization of tilapia (Oreochromis niloticus)
viscera oil extraction using response surface methodology. Food Research 7(3): 12-20.
Putri, A.R., Setyaningsih, W., Carrera
Fernández, C.A., Palma Lovillo, M., Rohman, A. & Riyanto, S. 2023.
Optimization of microwave-assisted fish oil extraction from Patin (Pangasius
micronemus) using Response Surface Methodology-Box Behnken Design
(RSM-BBD). Pharmaceutical Sciences Asia 50(3): 229-237.
Raeesi, R., Shabanpour, B. &
Pourashouri, P. 2021. Quality evaluation of produced silage and extracted oil
from rainbow trout (Oncorhynchus mykiss) wastes using acidic and
fermentation methods. Waste and Biomass Valorization 12: 4931-4942.
Rishitha, M., Gude, J. & Rao DM.
Extraction and characterization of fish oil from Channa straita waste collected from Anantapuram fish market. Journal of Natural Remedies.
21(8):228-40
Sahena, F., Zaidul, I. S. M., Jinap, S.,
Yazid, A. M., Khatib, A., & Norulaini, N. A. N. 2010. Fatty acid
compositions of fish oil extracted from different parts of Indian mackerel (Rastrelliger
kanagurta) using various techniques of supercritical CO2 extraction. Food
Chemistry 120(3): 879-885.
Sajib, M., Trigo, J.P., Abdollahi, M. &
Undeland, I. 2022. Pilot-scale ensilaging of herring filleting co-products and
subsequent separation of fish oil and protein hydrolysates. Food and
Bioprocess Technology 15(10): 2267-2281.
Saleh, N.E., Wassef, E.A. &
Abdel-Mohsen, H.H. 2022. Sustainable fish and seafood production and
processing. In Sustainable Fish Production and Processing, edited by
Galanakis, C.M. Massachusetts: Academic Press. pp. 259-291.
Salih, A.W., Najim, S.M. & Al-Noor,
J.M. 2021. Some physical, chemical and sensory properties of fish oil extracted
from fish wastes by physical and chemical methods. Biological and Applied
Environmental Research 5(1): 152-162.
Sivaranjani, S., Puja, N., Rout, R.K.,
Joshi, T.J., Singh, S.M., Indumathi, M. & Kumar, T.D. 2024. Strategies to
recover protein and lipids from fish processing by-products. In Fish
Waste to Valuable Products, edited by Maqsood, S., Naseer, M.N., Benjakul,
S. & Zaidi, A.A. Singapore: Springer Nature.
Suseno, S.H., Rizkon, A.K., Jacoeb, A.M.
& Listiana, D. 2021. Fish oil extraction as a by-product of Tilapia (Oreochromis sp.) fish processing with dry rendering method. IOP Conference Series:
Earth and Environmental Science 679: 012009.
Thirukumaran, R., Priya, V.K.A.,
Krishnamoorthy, S., Ramakrishnan, P., Moses, J.A. & Anandharamakrishnan, C.
2022. Resource recovery from fish waste: Prospects and the usage of intensified
extraction technologies. Chemosphere 299: 134361.
Tu, Z.C., Huang, T., Wang, H., Sha, X.M.,
Shi, Y., Huang, X.Q., Man, Z.Z. & Li, D.J., 2015. Physico-chemical
properties of gelatin from bighead carp (Hypophthalmichthys nobilis)
scales by ultrasound-assisted extraction. Journal of Food Science and
Technology 52: 2166-2174.
van’t Land, M., Vanderperren, E. &
Raes, K. 2017. The effect of raw material combination on the nutritional
composition and stability of four types of autolyzed fish silage. Animal
Feed Science and Technology 234: 284-294.
Vázquez, J.A., Fraguas, J., Mirón, J.,
Valcárcel, J., Pérez-Martín, R.I. & Antelo, L.T. 2020a. Valorisation of
fish discards assisted by enzymatic hydrolysis and microbial bioconversion: Lab
and pilot plant studies and preliminary sustainability evaluation. Journal
of Cleaner Production 246: 119027.
Vázquez, J.A., Rodríguez-Amado, I., Sotelo,
C.G., Sanz, N., Pérez-Martín, R.I. & Valcárcel, J. 2020b. Production,
characterization, and bioactivity of fish protein hydrolysates from aquaculture
turbot (Scophthalmus maximus) wastes. Biomolecules 10(2): 310.
Wan-Mohtar, W.A.A.Q.I., Khalid, N.I.,
Rahim, M.H.A., Luthfi, A.A.I., Zaini, N.S.M., Din, N.A.S. & Mohd Zaini,
N.A. 2023. Underutilized Malaysian agro-industrial wastes as sustainable carbon
sources for lactic acid production. Fermentation 9(10): 905.
Wang, M., Zhou, J., Collado, M.C. &
Barba, F.J. 2021. Accelerated solvent extraction and pulsed electric fields for
valorization of rainbow trout (Oncorhynchus mykiss) and sole (Dover
sole) by-products: Protein content, molecular weight distribution and
antioxidant potential of the extracts. Marine Drugs 19(4): 207.
Zhang, Y., Sun, Q., Liu, S., Wei, S., Xia,
Q., Ji, H., Deng, C. & Hao, J. 2021. Extraction of fish oil from fish heads
using ultra-high pressure pre-treatment prior to
enzymatic hydrolysis. Innovative Food Science & Emerging Technologies 70: 102670.
Zubairi, S.I., Shy-Yi, W.N., Kasim, Z.M.
& Nurzahim, Z. 2021. Physico-chemical characteristics and quality evaluation
of Malaysia haruan (Channa striatus) and toman (Channa micropeltes)
fish oil: Preliminary quality analysis prior to therapeutic consumption. Oriental
Journal of Chemistry 37(3): 619.
*Corresponding author; email:
soffalina@ukm.edu.my